
1

TABLE OF CONTENTS
1. Introduction​ 1

2. Kickoff Weekend​ 2

3. Robot Design and Control​ 3
3.1 Drive Train​ 3

3.1.1 Initial Design and Prototyping​ 3
3.1.2 Final Design​ 4
3.1.3 Control System​ 4

3.2 Arm​ 4
3.2.1 Initial Design and Prototyping​ 4
3.2.2 Final Design​ 5
3.2.3 Control System​ 5

3.3 Claw​ 6
3.3.1 Initial Design and Prototyping​ 6
3.3.2 Final Design​ 6

4. Software and Controls​ 7
4.1 FRC Architecture and Object Oriented Programming​ 7
4.2 Collaborative Work Environment​ 7
4.3 Implementing the Programming Process​ 8
4.4 Teaching New Programmers​ 9
4.5 Human Machine Interface​ 9
4.6 Scouting App​ 10
4.7 Vision Processing and Camera Streaming​ 10

5. Manufacturing​ 12

6. Practice Field​ 13

7. Conclusion​ 14

2

1. Introduction

Team 5401, the Bensalem High School Fightin’ Robotic Owls, is ecstatic to be back and
participating in 2023 Charged Up. While we’ve struggled in the recent past due to the
pandemic, new processes and planning allowed our team to be more efficient than
ever, despite an initial membership crisis. Last year, we had a Senior-heavy team,
resulting in nearly half of the team graduating. After an extensive recruitment
campaign, we welcomed an unprecedented 42 rookie members. We strive to create
as many opportunities for STEM and Business education as possible, and with the
massive inundation of rookies to the team, training them was no easy task. We
overcame this challenge with dedication and thoughtful mentorship, and currently
possess a super-motivated and capable rookie section. This year we welcome Bucky.
Named after Marvel’s Winter Soldier, known for his metal arm, our robot this year
truly represents the growing strength and agility on Team 5401.

3

2. Kickoff Weekend

Team 5401’s kickoff weekend started off on January 7th, when we all came to
Bensalem High School, and gathered in the audion. We counted down the seconds,
waiting for the official game video to release. As we watched the video, every
individual started planning solutions to certain problems they witnessed in the
announcement. Once the video was over, we broke off into multiple groups, made up
of randomly selected individuals. This way we have the least bias and stay on task.
Following breaking off into groups, we reconvene in the audion, to discuss further
what the robot should do. After all groups presented their ideas, we took a break to
think over each idea, and let the game really resonate with us. After the break, we
reconvened for the last time to talk about what we should focus on in the manual, and
then we disbanded. The next morning on January 8th, we came back in once again
and then discussed strategy, and how to achieve it. We split back up into the same
groups from the prior day, so it is more convenient to build off of what we had
already talked about. After further discussion, and comparison to other groups' ideas,
we began to make certain prototypes. This is so that we had a physical element to
compare the ideas to, as results are always different in real life as opposed to theory.

4

3. Robot Design and Control

3.1 Drive Train

3.1.1 Initial Design and Prototyping

After some deliberation about Swerve Vs. West Coast Drive (WCD), we decided
to use WCD as it would not negatively affect our cycle times when compared
to swerve as we also have the ability to flip the entire arm 180°. We initially
wanted to use four standard wheels and 2 omni wheels to assist in turning, but
when comparing wheels, we found that a set of six 6” wheels in addition to a
slightly lifted bumper worked most efficiently when attempting to climb and
balance on the Charge Station, as ground clearance to drive up the steep
angle of the Charge Station at a high speed was optimal. In addition, the omni
wheels affected our ability to precisely turn the robot in order to place the
game pieces. We decided to keep the Neo motors from last year as they still
worked well in this competition. Additionally, we updated our frame perimeter
from last year, with this one coming in at 29” x 30”. Everything is held in-place
by ⅛” walled 1”x2” aluminum box-tube frame rails riveted with VexPro
L-Gussets.

3.1.2 Final Design

While our design is constantly evolving with consistent testing, we have mostly
stayed true to the Initial design concept. Our West Coast Drive drivetrain
propelled by 6 Neo Brushless Motors attached to Gearboxes proved effective
regarding this year's design challenges.

3.1.3 Control System

This uses Spark maxes that are directly connected to the motors as well as the
encoders connected to the sparks as well. We are able to run a standard tank
drive and use those controls.

5

https://docs.google.com/document/d/1Bl9zWCEbgpHPPMlKM7L_UF_3j_-xphtSGsJwMRAx1CM/edit#heading=h.4d34og8

3.2 Arm

3.2.1 Initial Design and Prototyping

Our main goal with the Arm was to be able to comfortably get the claw
to a scoring node on the field without reaching outside of the frame perimeter.
To do this, we knew that we had to use a multi-stage retractable arm, as we
also needed to fit within the frame perimeter set for our starting configuration.
We used a variable sketch in Onshape to act somewhat as a Geometric Testing
Environment. After sketching a few designs, it became evident that a 33”
upright combined with a 45.5 extending & rotating arm was most desirable to
meet our goals.

3.2.2 Final Design

 When finalizing our design, we decided to use 1”x2” aluminum box tube
as the base of our uprights, attaching them via 4 VersaFrame T-Gussets and 2
custom-built L-Gussets to attach our uprights to our drivebase’s center frame
rail, another 1”x2” aluminum box tube with angled cuts to increase ease of
assembly. For our arm’s rotation, we decided to link a chain from top to
bottom, driven by a Neo-1650 Brushless Motor mounted on the side of the
upright, and driven by a set of steel hex shafts. We decided to use steel as the
aluminum was not strong enough to handle the massive amount of torque
applied to them via our chain driven sprockets. . The telescoping portion of our
arm is made up of three spring-loaded box tubes, tethered back for variable
control. This tether is connected to a spool fabricated out of a solid block of
aluminum, further attached to the motor plates and powered using another
NEO-1650. Holding the three box-tubes together.

3.2.3 Control System

Powered by 3 NEO-1650 Motors, and with braking power provided by
one Andymark locking friction brake, our arm has the ability to fully rotate over
the robot, driven by a chain & sprocket at the top of the uprights, otherwise
known as the “shoulder”. The arm is made up of three stages made of box
tube, held out with constant force springs attached via ThriftyBot arm blocks.
The end of the arm is tethered to a spool powered by another NEO-1650,
allowing the arm to retract and extend as needed.

6

3.3 Claw

3.3.1 Initial Design and Prototyping

The claw proved to be the most difficult design to zero in on, and
rightfully so, as it has the potential to make or break our robot’s effectiveness.
We started prototyping many different designs during and right after kickoff,
but the one that emerged most successful was a claw using passively-auto
orienting grippers, and horizontally compressing L-Brackets.

3.3.2 Final Design

Our Current claw design retained most of the aspects present in our
prototype. The claw is all held in a c-channel which is attached to the arm. The
c-channel has two pneumatic pistons attached on both the top and the
bottom. The pinions on the pistons are attached to the outer and inner
L-brackets that we call “fingers”. On the final design, we used a finite element
analysis tool called SimScale to virtually test the strength of these parts while
optimizing weight, as the claw’s mass was proportionally related to the arm’s
torque, & moment of inertia, something we struggled to reduce in order to
increase the robot’s speed and handling. These fingers glide along the inside of
the c-channel, where they are held in by vertical cylindrical spacers. The far
corner of both fingers has a piece of aluminum box-tube sandwiched between
each finger’s upper and lower plates. This box-tube has a grippy wheel and
axle attached through bearings, providing a full range of passive rotational
reorientation so that the game-piece may be accurately placed on its scoring
node.

3.3.3 Control System
The claw’s control system is relatively simple, benefitting ease of

maintenance during the competition. This was important as the claw is the
most likely system to be damaged. For the claw to open and close, we use two
spring-loaded pneumatic pistons, one placed above, and one placed below the
C-channel of the claw. To automatically orient the piece using gravity, we are
using free-rotating wheels attached to both fingers, which allow the game
piece’s center of gravity to fall to its lowest point, which also happens to
optimally position the game-piece for placement on a scoring node.

7

4. Software and Controls

4.1 FRC Architecture and Object Oriented Programming

Team 5401, like many other teams, primarily utilizes the Java
programming language. Java provides us the ability to match objects
found in the real world, with objects directly embedded into our code.

This year, Team 5401 jumped from the old to the new FRC Command
System. Code is split into Subsystems and Commands. Subsystems
mimic the physical parts of the robot, while commands execute actions
that the physical robot can perform. The Robot and RobotContainer
classes serve to loop the code of our robot utilizing the Scheduler class
built into the FRC Architecture. With these loops, we are able to map a
button to a given command which can be executed in teleop.
Autonomous code, which runs without human input, was also made
compliant with the new FRC Command System, by changing
CommandGroups into their respective Parallel and Sequential command
groups to allow us to chain together commands in a sequence, or run
them side-by-side

4.2 Collaborative Work Environment

The software team for Team 5401 have a weekly meeting to discuss
goals for that week. Additionally, tasks for any given day are written on a
whiteboard. Meetings are often organized to discuss the general logic
implementation of each individual Subsystem. Outside of meetings,
programmers may work individually or in a team depending on the
code or robot part that is being tested.

The following apps are used to communicate and organize the software
team:

●​ Slack: This application is mainly used for communication, such as
writing down goals and reminders. Slack also notifies us when
changes are made to the code.

●​ GitHub: This application is used to store the team’s code online as a
code repository. As a result, any computer can pull the code from
GitHub and edit it. In addition, GitHub offers the ability to “branch”
code which creates a copy of the current working code. The
existence of the copy allows experimental code to be created and
tested without overwriting the current code that works. If the

8

experimental code fails, the branch can be abandoned without
modifying the working code. If the experimental code works, the
code can then be merged into working code.

●​ Google Drive is utilized to share other files that are not code. Code
documentation and block diagrams are created and kept in Google
Slides. Mechanical and software teams share a Google sheet
detailing all the PWM, sensor, and pneumatic solenoid channels for
the robot. Controller mappings are documented and stored on
Google Drive as well.

4.3 Implementing the Programming Process

Identifying the Problem

●​ In the beginning of the build season, the software team has a
meeting with the design team. The design team gives the
software team a brief explanation of each subsystem, or
group of mechanical parts that work together on the robot
and its corresponding movements.

Designing/Drafting the Solution

●​ The software team begins to draw Block Diagrams of each
subsystem. The Block Diagrams are very similar to a typical
IPO chart: the Block Diagram displays the possible control
inputs, the necessary processing, and the actions of the robot
as a result.

●​ The software team then converts the Block Diagrams into
pseudocode. Pseudocode is not “real” code and consists of
comments strung together in order to provide an outline for
the real robot code. Pseudocode also helps work out logic and
structure for the future code.

●​ The software team then makes Controller Maps to better
understand what Xbox Controller buttons should activate what
command of the robot

Writing the Program

●​ Branches for each Subsystem are made off the main
code/branch. Each programmer is assigned a Subsystem to
write by converting pseudocode to actual code.

9

●​ During this step, programmers will often talk with the members
of the design team. The goal is to discuss the specific
components and movements of each Subsystem.

Testing and Revising

●​ After the practice robot is built, the software team tests each
Subsystem on the practice, one Subsystem at a time. If the
Subsystem works, the branch for that Subsystem is then
merged into the main code/branch. Discrepancies between
the practice robot and competition robot are noted and
updates for the competition robot are made.

●​ Other testing branches are made for specific purposes on a
case-by-case basis. For example, testing Shuffleboard, Vision,
and Autonomous for the first time typically requires its own
branch before it can be integrated into the finished product

4.4 Teaching New Programmers

Every year, several rookie programmers join the team with little to no
experience in writing code for the robot. This year, rather than place
responsibility into the senior members of the team, the Programming
Lead assumed the responsibility of teaching any and all incoming
members

Unlike in previous years, a lesson plan was developed for the purpose of
teaching incoming (and returning) members. The lesson plans varied
from a wide-array of disciplines, with rookies becoming well versed in
basic Java, FRC Control Systems, and fundamental software (like
VSCode & Github) before being sorted into the “clique” of their choosing.
Programmers were able to choose between learning more advanced
Java with Robot Code, to exciting Mobile App Architecture with Android
Studio, to even advanced vision processing with Python and C++.

4.5 Human Machine Interface

The team utilizes two Xbox controllers to run our robot this year. This is
due to many being familiar with its overall layout and design. This also
allows for customization of the buttons and joysticks.

10

Unlike in previous years, the method in which Xbox controllers were
implemented into the code has changed. The new FRC Command
System created a way of assigning commands to buttons directly, and
allowing you to bind commands directly to the axes. As a result it
allowed the team to use much simpler, compact, modular, and easier to
read code this year

4.6 Scouting App

●​ The “FROScoutingApp” was developed using Flutter. The app is
optimized to run on an Amazon Fire 7 Tablet running Android 5.1 (API 22).

●​ This application can be used to scout any game of any year, as it is
entirely customizable, allowing for users to set up and create the layout
and scoring guidelines they find to be the most crucial that year. A file
containing the layout of inputs can be exported from the app and
imported on other devices.

●​ The data from scouting is outputted into a csv file which can be easily
imported into sheets to allow for fast and easy data collection.

4.7 Vision Processing and Camera Streaming

The vision subsystem in programming has gained multiple significant changes
this year. We have incorporated the use of programs such as PhotonVision to help
working on AprilTag recognition this year. This will allow the robot to have a faster and
more precise reaction to the various changes on the field that may occur during this
dynamic competition.

11

5. Manufacturing

The STEM program at Bensalem High School received a new technical education
facility as part of the renovations that took place in 2017. Thanks to our new space, all
manufacturing of Bucky was done in-house in the Technical Education Shop of
Bensalem High School, adjacent to our robotics lab, by our student-led
manufacturing team consisting of 12 team members. This year, we further
strengthened our manufacturing ability by further training rookies on our CNC
machines,, which was used to produce many complex parts on the robot, making up
most of the claw, and cutting other specifically complex shapes such as our tinted
polycarbonate sponsor plates and . Additionally, we trained ~5 rookies on how to use
a modern milling machine with digital measurement and calculation abilities, as well
as a set of lathes. To further advance our goal of educating the next generation, we
integrated multiple 3D printers into our production pipeline. Using a Makerbot
Replicator+, an Ender 3D Pro, and a Markforged Onyx (a material made of nylon
embedded with strands of carbon fiber) Printer, we were able to fabricate
extraordinarily complex parts out of strong and lightweight materials.

12

6. Practice Field

After Kick-Off Weekend, we started building our field with wooden elements to assist
prototyping of robot assemblies, as well as give the drive team a practice field on
which to hone their skills. The assembly of the practice field this year was an
incredible opportunity to get as many of our rookie students involved as possible with
one of our rookie and intermediate members leading everyone, and noticeably
gaining effective leadership experience due to it. Since we have such a large team this
year, we struggled to find things for them to do, part of their build season experience
was assembling the field. This helped introduce them to basic engineering concepts
to prepare them going into assembly, CAD, or manufacturing. They were the ones
that found, printed, and read the measurements on the FIRST released field elements,
an experience that helped them become familiar with the field on a much deeper
level.

13

7. Conclusion

With our team of ~72 members, and a broader student leadership team, Team 5401
has created a robot that brings the team a sense of pride and achievement. From
day one of kickoff weekend, our goals were simple. To build a robot that achieves our
goals, is expertly engineered to exceed our quality standards, and is a robot we are
proud to show off at competitions. With the right course corrections, Bucky came
together quite efficiently while affording each and every one of our team members
invaluable STEM education and training. This year truly charged up our team with
motivation and technological advancements that will only continue to snowball in the
future with our now seasoned rookie-heavy team. We hope Bucky’s flair and
performance has you marveling at the growth our team has experienced as much as
we are.

14

	1. Introduction
	2. Kickoff Weekend
	3. Robot Design and Control
	3.1 Drive Train
	3.1.1 Initial Design and Prototyping
	
	3.1.2 Final Design
	3.1.3 Control System

	3.2 Arm
	3.2.1 Initial Design and Prototyping
	3.2.2 Final Design
	3.2.3 Control System

	3.3 Claw
	3.3.1 Initial Design and Prototyping
	3.3.2 Final Design

	4. Software and Controls
	4.1 FRC Architecture and Object Oriented Programming
	4.2 Collaborative Work Environment
	4.3 Implementing the Programming Process
	4.4 Teaching New Programmers
	4.5 Human Machine Interface
	4.6 Scouting App
	4.7 Vision Processing and Camera Streaming

	5. Manufacturing
	6. Practice Field
	7. Conclusion

