
1

Suggested Items

- A laptop with the following:
- Github desktop
- Vscode
- Git-Bash (Advanced)

How to Git
Going with

GitHub

2

Presenter:
Ace Hathaway &
Sophia Seidman

3

What is Version Control Software?
• Designed to control the different

updates or versions of a project
• Main goal: to keep clear points at

which the project was changed
• Common well known example of

a Version Control Software is
Google Docs “Version History” →

4

What is Git?
• A free and open source Version Control System (VCS)

• Created by Linus Torvalds (creator of the Linux kernel)

• Facilitates seamless collaboration on software projects

• Unlike traditional Version Control Systems, Git allows for completely offline
functionality

• You can make local changes as well as have completely local repositories

• Well liked by software developers for its simplicity, and efficiency

https://initialcommit.com/blog/How-Did-Git-Get-Its-Name

https://initialcommit.com/blog/How-Did-Git-Get-Its-Name

5

Basic Git Concepts
• Repository: A collection of branches and commits within a folder
• Commit: A snapshot of changes made in a repository at a point in time
• Branches: Different ‘versions’ of the same code

○ Usually used to create a different workspace to write new features
• Local Repository: A term used to describe if a version of the repository is

on only your computer, or onto the main branch.
• Pull request: A request to merge to branches of code together.

More on these later!

6

Interfacing with Git

• Git is primarily a command-line controlled system. Multiple Graphical User
Interfaces exist for Git, but they all just wrap around the basic Git interface

• Knowing how to use the underlying Git system is important in the event of
breaking changes, as most GUIs do not expose the more dangerous
actions of Git.

• We can utilize git by using a tool known as Git-Bash, which is a version of
the Bash terminal from Linux with the git extension.

7

Basics Git Commands
git add

Adds files to be tracked by Git
Add specific file: git add <filename>

Add all files: git add *

git commit
Take a snapshot of all files tracked by Git, and ‘commits’ them

git commit -m “Commit Message”

8

Basics Git Commands
git push

Pushes local commits to a remote server/repository
git push origin <branch>

git checkout
Switch to a different branch, or create a new one

Create a branch: git checkout -b <new_branch>

Switch to existing branch: git checkout <existing_branch>

Delete a branch: git checkout -b <existing_branch>

9

Basics Git Commands
git pull

Pulls commits from a remote server/repository into your local repo
git pull

git stash
“Stashes” incomplete changes away

Store files: git stash

Restore latest stash: git stash pop

View stashes: git stash list

Discard latest stash: git stash drop

10

Basics Git Commands
Replacing Local Changes

Revert changes to last commit: git checkout -- <filename>

Revert to state of remote branch:

git fetch origin

git reset --hard origin/master

11

What is GitHub?

• A company that allows for free cloud-based Git repository hosting

• Allows for individuals and other organisations, such as FRC teams, to easily
create, manage and collaborate on projects whilst using Git

• Designed to be User-Friendly

• Equipped with a GUI (Graphical User Interface)

12

Types of Repositories
● Public

○ Group Membership not required to view
○ Allows you to publish previous year’s code in order to comply with

FIRST regulations
○ Anyone can view, fork (clone), and make changes to the repository

■ Changes from outside the organization must be approved

● Private
○ Group Membership required to view

■ Guests can be invited
○ Allows you to keep the current season’s code private while still allowing

for collaboration
○ Easily converted into a Public repository at the end of the season

13

Git in VS Code
• You can commit your changes to robot code directly

in VS Code
○ Available in the Source Control menu

• Access to all Git commands inside VS Code
○ Click the WPILib button and type >Git:
○ Supports all Git commands
○ Simpler interface than through terminal

14

GitHub Desktop

https://desktop.github.com

GitHub provides a desktop client for Git and GitHub, allows for easy to creation
and management of repositories all from a single GUI based application. It is
available on all OS’s (Operating Systems)

https://desktop.github.com

15

Creating a Repository on GitHub

In GitHub Desktop

• File -> New repository (Ctrl+N)
• Fill in a name and description
• FRC utilizes the BSD 3-Clause license

Once created, publish the repository

• Repository -> Push
• Fill in a name and description

○ Typically the same as set before
• Choose to make the repo public or private
• Choose an organization to publish to

16

Cloning a Repository from GitHub

In GitHub Desktop

• File -> Clone Repository (Ctrl+Shift+O)
• Choose a repository from the list
• Confirm the directory where the repository will

be cloned to

17

Commits
• A commit is a snapshot of a branch at a

single point
• Only contains changes made at that point

in time
• Can be easily reverted in the event of a

breaking change
○ Individual files or entire commits

To create a commit in GitHub Desktop

• Change/create files in the repository
• Write a short summary (one sentence)
• Optionally, add a full description

18

Pushing Commits

• Commits only exist locally
• To make your commits viewable to the

rest of the organization, you must push
them to the ‘remote’

In GitHub Desktop
• Create Commits
• Repository -> Push (Ctrl+P)

19

Reverting Commits

• Fixes project breaking errors
• Allows you to track changes as

reverting problems, so you don’t
accidentally make the same mistake
again

• Reverts can also be reverted
○ Brings files back to a point before

the revert

20

Stashing Commits/Changes

• Incomplete changes can be
“stashed” away to go back to later

• Stashes are local only
○ Not synced to GitHub

• Useful when
○ You are not ready to commit

changes just yet
○ You are switching branches to

work on another feature

21

Branches

• Different versions of the same repository with different features
• Allows for multiple different features to be added at the same time

without the risk of damaging or other harming the “Master” or main
branch (Your public and most used branch)

CLAW BRANCH

DRIVEBASE BRANCH
ARM BRANCH

22

Uses For Branches

• Individual branches for each subsystem
○ Drivebase
○ Subsystem(s)

• Individual branches for multiple students working
○ When teaching a new topic, students can create a branch for

themselves to demonstrate knowledge, rather than cluttering the
organization with multiple repositories

• Branches for competitions
○ Allows you to make on-the-fly changes during competitions, and

review them after, without directly modifying master
• Allows you to keep a working copy of code in master, with changes

being done in different branches

CLAW BRANCH

DRIVEBASE BRANCH
ARM BRANCH

23

Pull Requests
• A Pull Request (PR) is a request to

merge two branches
○ Typically a feature branch being

merged into staging/master
• Provides a chance to review code for

quality and functionality before
marking it as stable

• Can result in merge conflicts
○ The same piece of code being

edited by multiple people in a way
that cannot be automatically
solved

○ These conflicts must be merged
manually

24

Merging and Merge Conflicts

• Merge conflicts can occur during
○ Pull Requests
○ Pulling code from the remote

• Must be manually fixed with
○ Git command line
○ VS Code or other IDE

25

Issue Linking
• We can now link issues to

specific branches
• Helps specify problems and

makes code integration easier
• Project boards for issues make

resolving much cleaner and
nicer!

26

FRC and Git: Best Practices

• One repository for each season

• One user account for each programmer

• Master/Main branch holds current ‘perfect’ robot code

• Staging branch holds robot code being tested

27

FRC and Git: Best Practices
• Once a feature works on its own, Pull Request into staging
• Once staging is verified working, Pull Request again into master
• Create branches for each competition attended, to keep track of on-the-fly

changes made in between matches
○ After competition, review changes, and Pull Request into staging/master

accordingly
This creates a “chain of custody” that ensures only quality, working code makes
its way into master, so there is no question of which code to be running at
competition.

28

Github is on IOS and Android!

• Helps with Build Season notifications

• Creates habits with consistently reviewing and refactoring code
that others have committed

• What’s not to love about Github being on your phone?
https://github.com/mobile

https://github.com/mobile

29

Live Demo Time :)

Follow along if you want

30

Kahoot Time!
https://create.kahoot.it/details/0c9aca68-6545-4379-bc48-710288eb93ff

or

https://create.kahoot.it/details/0c9aca68-6545-4379-bc48-710288eb93ff

31

Resources

https://web.archive.org/web/20180108144941/https://www.firstinspires.org/robotics/frc/kit-of-parts/#VirtualKit

https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-an-educator-or-research
er-discount

https://github.com/mobile

https://web.archive.org/web/20180108144941/https://www.firstinspires.org/robotics/frc/kit-of-parts/#VirtualKit
https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-an-educator-or-researcher-discount
https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-an-educator-or-researcher-discount
https://github.com/mobile

